Minimum Cost Homomorphism Dichotomy for Oriented Cycles

نویسندگان

  • Gregory Gutin
  • Arash Rafiey
  • Anders Yeo
چکیده

For digraphs D and H , a mapping f : V (D)→V (H) is a homomorphism of D to H if uv ∈ A(D) implies f (u) f (v) ∈ A(H). If, moreover, each vertex u ∈ V (D) is associated with costs ci (u), i ∈ V (H), then the cost of the homomorphism f is ∑ u∈V (D) c f (u)(u). For each fixed digraph H , we have the minimum cost homomorphism problem for H (abbreviated MinHOM(H )). The problem is to decide, for an input graph D with costs ci (u), u ∈ V (D), i ∈ V (H), whether there exists a homomorphism of D to H and, if one exists, to find one of minimum cost. We obtain a dichotomy classification for the time complexity of MinHOM(H ) when H is an oriented cycle. We conjecture a dichotomy classification for all digraphs with possible loops.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum Cost Homomorphism to Oriented Cycles with Some Loops

For digraphs D and H, a homomorphism of D to H is a mapping f : V (D)→V (H) such that uv ∈ A(D) implies f(u)f(v) ∈ A(H). Suppose D and H are two digraphs, and ci(u), u ∈ V (D), i ∈ V (H), are nonnegative real costs. The cost of the homomorphism f of D to H is ∑ u∈V (D) cf(u)(u). The minimum cost homomorphism for a fixed digraph H, denoted by MinHOM(H), asks whether or not an input digraphD, wit...

متن کامل

Minimum Cost Homomorphisms with Constrained Costs

Minimum cost homomorphism problems can be viewed as a generalization of list homomorphism problems. They also extend two well-known graph colouring problems: the minimum colour sum problem and the optimum cost chromatic partition problem. In both of these problems, the cost function meets an additional constraint: the cost of using a specific colour is the same for every vertex of the input gra...

متن کامل

Minimum Cost Homomorphism Dichotomy for Locally In-Semicomplete Digraphs

For digraphs G and H , a homomorphism of G to H is a mapping f : V (G)→V (H) such that uv ∈ A(G) implies f(u)f(v) ∈ A(H). In the minimum cost homomorphism problem we associate costs ci(u), u ∈ V (G), i ∈ V (H) with the mapping of u to i and the cost of a homomorphism f is defined ∑ u∈V (G) cf(u)(u) accordingly. Here the minimum cost homomorphism problem for a fixed digraph H , denoted by MinHOM...

متن کامل

Minimum Cost Homomorphisms to Semicomplete Bipartite Digraphs

For digraphs D and H, a mapping f : V (D)→V (H) is a homomorphism of D to H if uv ∈ A(D) implies f(u)f(v) ∈ A(H). If, moreover, each vertex u ∈ V (D) is associated with costs ci(u), i ∈ V (H), then the cost of the homomorphism f is ∑ u∈V (D) cf(u)(u). For each fixed digraph H, we have the minimum cost homomorphism problem for H. The problem is to decide, for an input graph D with costs ci(u), u...

متن کامل

Complexity of the Minimum Cost Homomorphism Problem for Semicomplete Digraphs with Possible Loops

For digraphs D and H , a mapping f : V (D)→V (H) is a homomorphism of D to H if uv ∈ A(D) implies f(u)f(v) ∈ A(H). For a fixed digraph H , the homomorphism problem is to decide whether an input digraph D admits a homomorphism to H or not, and is denoted as HOM(H). An optimization version of the homomorphism problem was motivated by a realworld problem in defence logistics and was introduced in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Graphs and Combinatorics

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2008